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The motion of a free solid is Enlerian if it is not acted on by any external moments. It can 
be shown, however, that even in the presence of an external moment a solid can sngage in 
motion which differs Born the Enlerian only in the character of the time dependence of the 
angles, while the geometry of motion remains exactly the same as in the Euler case. In or- 
der for this to happen the external moment acting on the solid must maintain a constsnt di- 
rection in the inertial field and must be parallel to the kinetic moment vector L of the solid. 
The absolute valne of this external moment III can be an arbitrary function of time. 

Let ot, o , og be the projections of the angular velocity vector on the principal axes 1, 
2, 3 of the i* so rd whose principal moments of inertia are A, A, A,. Assuming that aIt a*, 
a, are the direction cosines of the vector L (and hence of the vector ml with respect to the 
axes 1, 2, 3 of the solid, we write the Eqs. of motion of the solid acted on by the moment m 
in the form 

-Ml' + 6% - Aa) 0403 = a,m 

A*%’ + (Al - AS) o,to, = a2m (1) 

As@,’ + (AS - A3 olop = a+ 
By virtue of the above assumption concerning the external moment, the direction of the 

vector L in space is constant and can be taken as an axis of a stationary coordinate system. 
Then, making use of the self-evident relations 

alL t= A,ol, a2L = A~<c~, a& = A@3 (2) 
we eliminate al, a,, as from system (l), 

Aawa’ + (Al -As) WlmJ = 5 ilaos (3) 

As%’ + (Aa - Al) w1wa = T /Jr09 

The resulting B 
generalization of I 

stem enables ua to construct two algebraic integrals which constitute a 
e integrala of the moment and the energy E in the Euler problem, In fact, 

multiply~g Eqs. (3) by A ttilt A, w2, As me, respectively, and adding, we obtain the self- 
evident integral 

L = 
s 

mdt (4) 

Similarly, multiplying these Eqs, by ot, o 
gral 

2, a3 and adding, we obtain the second inte- 

E/L’ = const (5) 
Writing the resulting integrals in the form 

Al%,* + A,*@ + A,%,2 = I,3 

Arm,* + ABox9 + dpga = DLa (n = cons0 (6) 
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we note that they are complatsly identicel in form to the corresponding integrals of the ER- 
ler problem, differing solely in the fact that L here is an explicit function of time given by 
relation (4). Moreover, wr can redace both these integrals and initial Eqs. (3) to a form en- 
tirely similar to the corresponding relations of the Euler case. This is accomplished by 
carrying out the substitution of variables 

01 = a&, % = Q&L, @,q = Q&L, z = s Ldt (7) 

where 7 is the new independent variable. 
Denoting differentktion with respect to 7 with a prime, we obtain the following system 

for fit, &, Q,: 

A,S2,’ + (As - Aa) bt,t-& = 0 

AaQa’ + (A, -A,,) Q,Q,=O (8) 

As%’ + (As -A,) S&Q,=0 

Using the above to express &, n p, $4 3 as elliptic fnnctions of 7, we can easily use (7) 
to obtain ~1, #sr o3 as explicit functions of time. Clearly, the variability of L as compared 
with the Euler case results merely in a proportional variation of all the angular velocity 
vector components without altering the relationships among them. This enables us to repre- 
sent sufficiently clearly the character of the phase point trajectory in the space ot, 02, o3 
for any law of variation of the external moment. 

Turning now to the determination of the angles, we note that with allowance for the rela- 
tions 

al = sin+ sincp, a, = sin@cosip, c&e = co.& (9) 
where 6 and cp are the Euler angles of nntation and pure rotation, Expressions (2) imply 
that 

4-h 
tfw=-&& ’ cos 6 = A8Q8 

i.e. that the Euler angles 6 and gr can be expressed in terms of T exactly as in terms of t 
in the Euler case. As regards the precession angle $, eliminating the angles ‘@ and rp from 
the relation 

%#i= 
orsingl -+-orr.oscp 

sin* (11) 

by means of (IO) and converting to the new argument T, we obtain 

A&r2 + A&a2 
9’ = A&i21a + A&2$ 

(12) 

This equation is quite identical in form to the corresponding equation in the Euler case. 
Thus, the angle $ can ba expressed in terms of 7 exactly as in terms of t in the Euler case. 
All this means that the geometrical character of the motion of a solid acted on by aa exter 
nal moment of arbitrary magnitude parallel to the kinetic moment vector of the solid is com- 

pletely identical to Enlerian motion. The only distinction lies in a different dependence of 
the angles on time and reduces to the replacement of the real time t by a quantity propor 
tional to 

7= mdtdt (13) 

Hence, the described state of motion can be regarded as a generalization of classical 
Eulerfan motion subject to the same geometrica interpretation as in the Euler case. 

In their famous mechanics courses Appell and MacMillan cite as an example a special 
case in which the equations of motion of a solid acted on by an external moment are reduci- 
ble to Euler equations. This is the case where the moment acting on the solid is parallel 
and proportional to its kinetic moment. As is clear from the foregoing discussion, the latter 
requirement is quite superfluous. 

Also noteworthy is the fact that if the moment acting on the sotid is of constant absolute 
value, it can be shown that the process of acceleration for deceleration) of the body is opti- 
mum in response (with certain limits as to the absolute value of the controlling moment). 

Thus, the states of motion of a solid just considered are of definite practical interest. 

Translated by A. Y. 


